US009111325B2

a2z United States Patent (10) Patent No.: US 9,111,325 B2
Diard 45) Date of Patent: Aug. 18, 2015
(54) SHARED BUFFER TECHNIQUES FOR g,;gf,}gg i g; }ggg golign, Jri
/ol miki et al.
HETEROGENEOUS HYBRID GRAPHICS 5841435 A 11/1998 Daverer ef al.
. . 5,878,264 A 3/1999 Ebrahim
(75) Inventor: Franck Diard, Mountain View, CA (US) 5900913 A 5/1999 Tults
5,917,502 A 6/1999 Kirkland et al.
(73) Assignee: NVIDIA CORPORATION, Santa 5,923,307 A 7/1999 Hogle, IV
Clara, CA (US) 5,953,532 A 9/1999 Lochbaum
’ 5,978,042 A 11/1999 Vaske et al.
(*) Notice: Subject. to any disclaimer,. the term of this g:g?g:ggg ﬁ lfgggg gﬁ?ﬁeliset al.
patent is extended or adjusted under 35 6025841 A 2/2000 Finkelstein et al.
U.S.C. 154(b) by 1259 days. 6,025,853 A 2/2000 Baldwin
6,075,531 A 6/2000 DeStefano
(21) Appl. No.: 12/651,395 6,078,339 A 6/2000 Meinerth et al.
i 6,191,758 Bl 2/2001 Lee
(22) Filed: Dec. 31, 2009 (Continued)
(65) Prior Publication Data FOREIGN PATENT DOCUMENTS
US 2011/0157189 Al Jun. 30, 2011 WO 2005026918 3/2005
(51) Int.CL OTHER PUBLICATIONS
GOGF 15/16 (2006.01) “Epson; EMP Monitor V4, 10 Operation Guide”, by Seiko Epson
GO6T 1/00 (2006.01) Corp., 2006 http://support.epsonsu/products/manuals/100396/
(52) US.CL Manual/EMPMonitor.pdf.
CPC e GO6T 1/00 (2013.01) (Continued)
(58) Field of Classification Search
USPC .o 710/314; 345/501; 719/327 . . b
See application file for complete search history. Primary Examiner — Phi Hoang
(56) References Cited 67 ABSTRACT

U.S. PATENT DOCUMENTS

4,603,400 A 7/1986 Daniels
4,955,066 A 9/1990 Notenboom
5,016,001 A 5/1991 Minagawa et al.
5,321,510 A 6/1994 Childers et al.
5,371,847 A 12/1994 Hargrove
5,461,679 A 10/1995 Normile et al.
5,517,612 A 5/1996 Dwin et al.
5,572,649 A 11/1996 Elliott et al.
5,687,334 A 11/1997 Davis et al.
5,712,995 A 1/1998 Cohn

10

APPLICATION

120
RUNTIME API
(@3d9.dl))

140
THUNK LAYER
(GDI32dIl)

——

08 KERNEL MODE
DRIVER (dxgkrnlsys)

DEVICE DRIVER.
INTERFACE (umd.dll)

The graphics processing technique includes detecting a tran-
sition from rendering graphics on a first graphics processing
unit to a second graphics processing, by a hybrid driver. The
hybrid driver, in response to detecting the transition, config-
ures the first graphics processing unit to create a frame buffer.
Thereafter, an image rendered on the second graphics pro-
cessing unit may be copied to the frame buffer of the first
graphics processing unit. The rendered image in the frame
buffer may then be scanned out on the display.

16 Claims, 4 Drawing Sheets

130

160
DEVICE SPECIFIC
KERNEL MODE
DRIVER (kimd.sys)

-

DEVICE $PECIFIC

DRIVER (dkmd sys)
J

~

KERNEL MODE
UNATTACHED

‘ ADAPTER

173
dGPU

PRIMARY
DISPLAY

US 9,111,325 B2

Page 2
(56) References Cited 2003/0179244 A1 9/2003 Erlingsson
2003/0188144 Al 10/2003 Duet al.
U.S. PATENT DOCUMENTS 2003/0189597 Al 10/2003 Anderson et al.
2003/0195950 Al 10/2003 Huang et al.
6,208,273 Bl 3/2001 Dye et al. 2003/0197739 Al 10/2003 Bauer
6.226.237 Bl 5/2001 Chan et al. 2003/0200435 Al 10/2003 England et al.
6’259’460 Bl 7/2001 Gossett et al. 2003/0208529 Al 11/2003 Pendyala et al.
6’337,747 Bl 1/2002 Rosenthal 2003/0222876 Al 12/2003 Giemborek et al.
6’359’624 Bl 3/2002 Kunimatsu 2003/0222915 Al 12/2003 Marion et al.
6’388’671 Bl 5/2002 Yoshizawa et al. 2003/0225872 Al 12/2003 Bartek et al.
6’407’752 Bl 6/2002 Harnett 2003/0229900 Al 12/2003 Reisman
6’473’086 Bl 10/2002 Morein et al. 2004/0001069 Al 1/2004 Snyder et al.
6:480:198 B2 11/2002 Kang 2004/0019724 Al 1/2004 Singleton, Jr. et al.
6,483,502 B2 11/2002 Fujiwara 2004/0027315 Al 2/2004 Senda et al.
6.483.515 B1 11/2002 Hanko 2004/0066414 Al 4/2004 Czerwinski et al.
6498721 B1 122002 Kim 2004/0070608 Al 4/2004 Saka
6:557:065 Bl 4/2003 Peleg et al. 2004/0080482 Al 4/2004 Magendanz et al.
6.600.500 Bl 7/2003 Yamamoto 2004/0085328 Al 5/2004 Maruyama et al.
6:628:243 Bl 9/2003 Lyons et al. 2004/0095382 Al 5/2004 Fisher et al.
6.628.309 Bl 9/2003 Dodson et al. 2004/0145605 Al 7/2004 Basu et al.
6’630,943 Bl 10/2003 Nason et al. 2004/0153493 Al 8/2004 Slavin et al.
6’654’826 Bl 11/2003 Cho et al. 2004/0184523 Al 9/2004 Dawson et al.
6:657:632 B2 12/2003 Emmot et al. 2004/0222978 Al 112004 Bear et al.
6.724.403 Bl 4/2004 Santoro et al. 2004/0224638 Al 11/2004 Fadell et al.
6’753’878 Bl 6/2004 Heirich et al. 2004/0225901 Al 112004 Bear et al.
6774912 Bl 82004 Ahmed ot al. 2004/0225907 Al 11/2004 Jain et al.
6.784.855 B2 82004 Matthews et al. 2004/0235532 Al 11/2004 Matthews et al.
6816977 B2 11/2004 Brakmo et al, 2004/0260565 Al 12/2004 Zimniewicz et al.
6,832,269 B2 12/2004 Huang et al. 2004/0268004 Al 12/2004 Oakley
6,832,355 Bl 12/2004 Duperrouzel et al. 2005/0025071 Al 2/2005 Miyake et al.
6,871,348 Bl 3/2005 Cooper 2005/0059346 Al 3/2005 Gupta et al.
6,956,542 B2 10/2005 Okuley et al. 2005/0064911 Al 3/2005 Chen et al.
7,007,070 Bl 2/2006 Hickman 2005/0066209 Al 3/2005 Kee etal.
7.010.755 B2 3/2006 Anderson et al. 2005/0073515 Al 4/2005 Kee et al.
7.030.837 Bl 4/2006 Vong etal. 2005/0076088 Al 4/2005 Kee et al.
7.034.776 Bl 4/2006 Tove 2005/0076256 Al 4/2005 Fleck et al.
7036.089 B2 42006 Bauer 2005/0091610 Al 4/2005 Frei etal.
7.103.850 Bl 9/2006 Engstrom et al. 2005/0097506 A1 52005 Heumesser
7.124360 B1 10/2006 Drenttel et al. 2005/0125739 Al 6/2005 Thompson et al.
7127745 Bl 10/2006 Herse of al. 2005/0132299 Al 6/2005 Jones et al.
7.129.909 Bl 10/2006 Dong et al. 2005/0140566 A1 6/2005 Kim et al.
7,149,982 Bl 12/2006 Duperrouzel et al. 2005/0168472 Al 82005 Gosaliaetal. 345/543
7,212,174 B2 5/2007 Johnston et al. 2005/0182980 Al 82005 Sutardja
7,269,797 Bl 9/2007 Bertocci et al. 2005/0240538 Al 10/2005 Ranganathan
7359.998 B2 4/2008 Chan et al. 2005/0240873 Al 10/2005 Czerwinski et al.
7.486.279 B2 2/2009 Wong et al. 2005/0262302 A1 11/2005 Fuller et al.
7,509,444 B2 3/2009 Chiu et al. 2005/0268246 Al 12/2005 Keohane et al.
7,546,546 B2 6/2009 Lewis-Bowen et al. 2006/0001595 Al 1/2006 Aoki
7.552.391 B2 6/2009 Evans et al. 2006/0007051 Al 1/2006 Bear et al.
7.558.884 B2 7/2009 Fuller et al. 2006/0085760 Al 4/2006 Anderson et al.
7,590,713 B2 9/2009 Brockway et al. 2006/0095617 Al 5/2006 Hung
7612783 B2 11/2009 Koduri ef al. 2006/0119537 Al 6/2006 Vong et al.
7783985 B2 82010 Indiran et al. 2006/0119538 Al 6/2006 Vong et al.
8176155 B2 52012 Yangetal. 2006/0119602 Al 6/2006 Fisher et al.
8,190,707 B2 5/2012 Trivedi et al. 2006/0125784 Al 6/2006 Jang et al.
8.736.617 B2 5/2014 Lew et al. 2006/0129855 Al 6/2006 Rhoten et al.
200 1/6025;366 Al 10/2001 OhKki et al. 2006/0130075 Al 6/2006 Rhoten et al.
2002/0054141 Al 5/2002 Yen et al. 2006/0142878 Al 6/2006 Banik et al.
2002/0057295 Al 5/2002 Panasyuk et al. 2006/0150230 Al 7/2006 Chung et al.
2002/0087225 Al 7/2002 Howard 2006/0164324 Al 7/2006 Polivy et al.
2002/0128288 Al 9/2002 Kyle et al. 2006/0232494 Al 10/2006 Lund et al.
2002/0129288 Al 9/2002 Loh et al. 2006/0250320 Al 11/2006 Fuller et al.
2002/0140627 Al 10/2002 Ohki et al. 2006/0267857 Al 11/2006 Zhang et al.
2002/0163513 A1 11/2002 Tsuji 2006/0267987 Al 11/2006 Litchmanov
2002/0175933 Al 11/2002 Ronkainen et al. 2006/0267992 Al 11/2006 Kelley et al.
2002/0182980 Al 12/2002 Van Rompay 2006/0282604 Al* 12/2006 Temkineetal. ... 710/314
2002/0186257 Al 12/2002 Cadiz et al. 2006/0282855 Al 12/2006 Margulis
2002/0196279 Al 12/2002 Bloomfield et al. 2007/0046562 Al 3/2007 Polivy et al.
2003/0016205 Al 1/2003 Kawabata et al. 2007/0050727 Al 3/2007 Lewis-Bowen et al.
2003/0025689 Al 2/2003 Kim 2007/0052615 Al 3/2007 Van Dongen et al.
2003/0041206 Al 2/2003 Dickie 2007/0067655 Al 3/2007 Shuster
2003/0065934 Al 4/2003 Angelo et al. 2007/0079030 Al 4/2007 Okuley et al.
2003/0088800 Al 5/2003 Cai 2007/0083785 Al 4/2007 Sutardja
2003/0090508 Al 5/2003 Keohane et al. 2007/0103383 Al 5/2007 Sposato et al.
2003/0105812 Al 6/2003 Flowers, Jr. et al. 2007/0195007 Al 8/2007 Bear et al.
2003/0126335 Al 7/2003 Silvester 2007/0195099 Al 8/2007 Diardetal.cc.c...... 345/501
2003/0160816 Al 8/2003 Zoller et al. 2007/0273699 Al 11/2007 Sasaki et al.
2003/0177172 Al 9/2003 Duursma et al. 2008/0034318 Al 2/2008 Louch et al.
2003/0179240 Al 9/2003 Gest 2008/0130543 Al 6/2008 Singh et al.

US 9,111,325 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0155478 Al 6/2008 Stross

2008/0172626 Al 7/2008 Wu
2008/0297433 Al 12/2008 Heller et al.
2008/0303846 Al* 12/2008 Brichteretal. ... 345/661

2008/0320321 Al
2009/0021450 Al

12/2008 Sutardja
1/2009 Heller et al.

2009/0031329 Al 1/2009 Kim

2009/0059496 Al 3/2009 Lee

2009/0160865 Al 6/2009 Grossman

2009/0167785 Al* 7/2009 Wongcccevvviniinnnn 345/629
2009/0172450 Al 7/2009 Wong et al.

2009/0172707 Al* 7/2009 Huangetal. ... 719/327
2009/0193243 Al 7/2009 Ely

2010/0010653 Al
2010/0033433 Al
2010/0033916 Al

1/2010 Bear et al.
2/2010 Utz et al.
2/2010 Douglas et al.

2010/0169666 Al* 7/2010 Dewanetal. ... 713/190
2010/0207957 Al* 8/2010 Tanejaetal. 345/592
2011/0219313 Al 9/2011 Mazzaferri

OTHER PUBLICATIONS

“Virtual Network Computing, http://en.wikipedia.org/wikiVnc”,
Downloaded Circa: Dec. 18, 2008, pp. 1-4.

Andrew Fuller; “Auxiliary Display Platform in Longhorn”;
Microsoft Corporation; The Microsoft Hardware Engineering Con-
ference Apr. 25-27, 2005; slides 1-29.

McFedries, ebook, titled “Complete Idiot’s Guide to Windows XP”,
published Oct. 3, 2001, pp. 1-7.

PCWorld.com, “Microsoft Pitches Display for Laptop Lids” dated
Feb. 10, 2005, pp. 1-2, downloaded from the Internet on Mar. 8, 2006
from http://www.pcworld.com/resources/article/aid/119644.asp.
Vulcan, Inc., “Product Features: Size and performance”, p. 1; down-
loaded from the internet on Sep. 20, 2005 from http://www.
flipstartpc.com/aboutproduct__features_ sizeandpower.asp.

Vulcan, Inc., “Product Features:LID Module”, p. 1, downloaded
from the Internet on Sep. 19, 2005 from http://www.flipstartpc.com/
aboutproduct__features_ lidmodule.asp.

Vulcan, Inc., “Software FAQ”, p. 1, downloaded from the internet on
Sep. 20, 2005 from http://www flipstartpc.com/faq__software.asp.
“System Management Bus (SMBus) Specification,” Version 2.0,
Aug. 3, 2000, pp. 1-59.

Handtops.com, “FlipStart PC in Detail” pp. 1-4, downloaded from
the internet o Sep. 20, 2005 from http://www.handtops.com/show/
news/S.

Microsoft Corporation, “Microsoft Windows Hardware Showcase”,
dated Apr. 28, 2005; pp. 1-5; downloaded from the internet on Sep.
15, 2005, from http://www.microsoft.com/whdc/winhec/
hwshowcase05.mspx.

Paul Thurrot’s SuperSite for Windows, “WinHEC 2004 Longhom
Prototypes Gallery”, dated May 10, 2004, pp. 1-4, downloaded from
the internet on Sep. 15, 2005 from http://www.sinwupersite.com/
showcase. loghom_ winhc__proto.asp.

Vulcan, Inc., “Product Features:LID Module”, p. 1, downloaded
from the Internet on Sep. 19, 2005 from http://www.flipstartpc.com/
aboutproductfeatures_ lidmodule__ asp.

“Usage: NVIDIA GeForce 6800—PCle x16”, Dell, archived Jan. 15,
2006 by archive.org, Downloaded Jun. 29, 2011, http://web.archive.
org/web/20060115050119/http://support.dell.com/support/edocs/
video/P82192/en/usage.htm.

“Graphics: Intel® 82852/82855 Graphics Controller Family”, Intel,
Archived Nov. 2, 2006 by archive.org, Downloaded Jun. 30, 2011,
http://web.archive.org/web/2006 110304 5644/http://www.intel.
com/support/graphics/intel852gm/sb/CS-009064 htm?.

“The Java Tutorial: How to Use Combo Boxes”, Archived Mar. 5,
2006 by archive.org, Downloaded Jun. 30, 2011, http://web.archive.
org/web/20050305000852/http://www-mips.unice.fr/Doc/Java/Tu-
torial/uiswing/components/combobox.html.

* cited by examiner

U.S. Patent Aug. 18, 2015 Sheet 1 of 4 US 9,111,325 B2

(110)
APPLICATION
. Y,
¢ 130
(LW DEVICE DRIVER
RUNTIME API INTERFACE (umd.dll)
(d3d9.dll)
. Y,

140)

THUNK LAYER
(GDI32.dI1)

DRIVER (dxgkrnl.sys)

150
OS KERNEL MODE

160 165))
DEVICE SPECIFIC DEVICE SPECIFIC
KERNEL MODE KERNEL MODE
DRIVER (kmd.sys) DRIVER (dkmd.sys)
UNATTACHED
¢ ADAPTER
170 175
iGPU dGPU
¢ /
180
PRIMARY
DISPLAY .
Figure 1

U.S. Patent Aug. 18, 2015 Sheet 2 of 4 US 9,111,325 B2

205
CPU(S)
NORTH- 230
BRIDGE
240 piRsTGPU 120 220
(iGPU) SYSTEM
DISPLAY
— — | K= s
Y

T

245 23

116}
SOUTH-
(NETWORK <:> BRIDGE

ADAPTER) DISK DRIVE

U U

SECOND GpU 112 230 o 233 260
(dGPU PCIDEVICE) |4 06 VO (USB oo /0
(PCI DEVICE) KEYBOARD) (USB DEVICE)

Figure 2

U.S. Patent

f

ATTACHED
ADAPTER

Aug. 18, 2015

110

APPLICATION

Y

RUNTIME API
(d3do.dIl)

Y

THUNK LAYER
(GDI32.d1l)

Y

0OS KERNEL MODE
DRIVER (dxgkrnl.sys)

.

120)

\ J

140)

J

150)

J

Sheet 3 of 4 US 9,111,325 B2

130

DEVICE DRIVER
INTERFACE (umd.dll)

UNATTACHED
ADAPTER

___Y_ __
- 162
DEVICE SPECIFIC
KERNEL MODE

DRIVER (ikmd.sys)

I
I
I
\

160
| WRAPPER

| DRIVER

DEVICE SPECIFI :
KERNEL MODE
DRIVER (dkmd.sys))I

@]

|
I
I
\

v

v

—
<

iGPU
(Primary Dcvice)

—_
N

dGPU

Y

180

PRIMARY
DISPLAY

Figure 3A

U.S. Patent

UNATTACHED
ADAPTER

/

US 9,111,325 B2

Aug. 18, 2015 Sheet 4 of 4
(110)
APPLICATION
\. J
* 130
4)
120 DEVICE DRIVER
RUNTIME API INTERFACE (umd.dIl)
(d3d9.dIn)
. * J
(140)
THUNK LAYER
(GDI32.d1])
_ * J
(150)
0S KERNEL MODE ATTACHED
DRIVER (dxgkrnl.sys) ADAPTER
. J
-y ____ o ___
3 1627 1601 1647
| DEVICE SPECIFIC |WRAPPER_ | DEVICE SPECIFIC I
KERNEL MODE DRIVER KERNEL MODE
| R [v | oo
\ DRIVER (ikmd.sys)) \ DRIVER (dkmd.sys))
170 175
iGPU dGPU
(Frame Buffer) (Primary Device)
180
PRIMARY
DISPLAY

Figure 3B

US 9,111,325 B2

1

SHARED BUFFER TECHNIQUES FOR
HETEROGENEOUS HYBRID GRAPHICS

BACKGROUND OF THE INVENTION

Conventional computing systems may include a discrete
graphics processing unit (dGPU) or an integral graphics pro-
cessing unit iIGPU). The discrete GPU and integral GPU are
heterogeneous because of their different designs. The inte-
grated GPU generally has relatively poor processing perfor-
mance compared to the discrete GPU. However, the inte-
grated GPU generally consumes less power compared to the
discrete GPU.

The conventional operating system does not readily sup-
port co-processing using such heterogeneous GPUs. Refer-
ring to FIG. 1, a graphics processing technique according to
the conventional art is shown. When an application 110 starts,
it calls the user mode level runtime application programming
interface (e.g., DirectX API d3d9.d1l) 120 to determine what
display adapters are available. In response, the runtime API
120 enumerates the adapters that are attached to the desktop
(e.g., the primary display 180). A display adapter 165, 175,
even recognized and initialized by the operating system, will
not be enumerated in the adapter list by the runtime API1 120
if it is not attached to the desktop. The runtime API 120 loads
the device driver interface (DDI) (e.g., user mode driver (um-
d.dll)) 130 for the GPU 170 attached to the primary display
180. The runtime API 120 of the operating system will not
load the DDI of the discrete GPU 175 because the discrete
GPU 175 is not attached to the display adapter. The DDI 130
configures command buffers of the graphics processor 170
attached to the primary display 180. The DDI 130 will then
call back to the runtime API 120 when the command buffers
have been configured.

Thereafter, the application 110 makes graphics request to
the user mode level runtime API (e.g., DirectX API d3d9.d11)
120 of the operating system. The runtime 120 sends graphics
requests to the DDI 130 which configures command buffers.
The DDI calls to the operating system kernel mode driver
(e.g., DirectX driver dxgkrnl.sys) 150, through the runtime
API 120, to schedule the graphics request. The operating
system kernel mode driver then calls to the device specific
kernel mode driver (e.g., kmd.sys) 150 to set the command
register of the GPU 170 attached to the primary display 180 to
execute the graphics requests from the command buffers. The
device specific kernel mode driver 160 controls the GPU 170
(e.g., integral GPU) attached to the primary display 180.

There is, however, a need to enable applications to render
graphics on the discrete graphics processor and present the
rendered graphics on a display attached to the integral graph-
iCS processor.

SUMMARY OF THE INVENTION

Embodiments of the present technology are directed
toward shared buffer techniques for heterogeneous graphics.
The present technology may best be understood by referring
to the following description and accompanying drawings that
are used to illustrate embodiment of the present technology.

In one embodiment, a graphics processing technique
includes loading a device kernel mode driver agent, such as a
wrapper driver, that includes a kernel mode device driver for
a first graphics processing unit attached to a primary display
and a kernel mode device driver for a second graphics pro-
cessing unit. A call may be received by the device kernel
mode driver agent from a service or user interface to transition
from rendering graphics on the first graphics processing unit

10

15

20

25

30

35

40

45

50

55

60

65

2

to the second graphics processing unit. In response to the
transition call, the device kernel mode driver agent generates
a call to configure the first graphics processing unit to create
a surface in a frame buffer. In response to the call to create the
surface, the device kernel mode driver agent receives a virtual
address of the surface in the frame buffer of the first graphics
processing unit. The device kernel mode driver agent deter-
mines and stores a physical address of the surface from the
virtual address for use in transporting rendered data from the
second graphics processing unit to the frame buffer of the first
graphics processing unit attached to the primary display.

In another embodiment, a device kernel mode wrapper
driver impersonates the operating system and sends a
sequence of command to cause the GPU attached to the
primary display to create a displayable surface and make it
accessible to direct memory access (DMA) blits from a sec-
ond GPU. The sequence of commands includes creating a
shared primary surface, setting a mode with this created sur-
face to show it on the primary display and mapping it through
the bus coupling the second GPU to the GPU attached to the
primary display. The surface that the wrapper driver causes
the GPU attached to the primary display to create is DMA
accessible to an external DMA engine, such as the copy
engine of the second GPU. Upon successful setup of the
shared surface, the second GPU can then display the frames
that it computes on the primary display.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present technology are illustrated by
way of example and not by way of limitation, in the figures of
the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FIG. 1 shows a graphics processing technique according to
the convention art.

FIG. 2 shows a graphics co-processing computing plat-
form, in accordance with one embodiment of the present
technology.

FIGS. 3A and 3B show a graphics co-processing tech-
nique, in accordance with one embodiment of the present
technology.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments
of'the present technology, examples of which are illustrated in
the accompanying drawings. While the present technology
will be described in conjunction with these embodiments, it
will be understood that they are not intended to limit the
invention to these embodiments. On the contrary, the inven-
tion is intended to cover alternatives, modifications and
equivalents, which may be included within the scope of the
invention as defined by the appended claims. Furthermore, in
the following detailed description of the present technology,
numerous specific details are set forth in order to provide a
thorough understanding of the present technology. However,
it is understood that the present technology may be practiced
without these specific details. In other instances, well-known
methods, procedures, components, and circuits have not been
described in detail as not to unnecessarily obscure aspects of
the present technology.

Referring to FIG. 2, a graphics co-processing computing
platform, in accordance with one embodiment of the present
technology is shown. The exemplary computing platform
may include one or more central processing units (CPUs)
205, a plurality of graphics processing units (GPUs) 170, 175,
volatile and/or non-volatile memory (e.g., computer readable

US 9,111,325 B2

3

media) 220, 225, one or more chip sets 230, 235, and one or
more peripheral devices 175, 240-260 communicatively
coupled by one or more busses. The GPUs include heteroge-
neous designs. In one implementation, a first GPU may be an
integral graphics processing unit (iGPU) and a second GPU
may be a discrete graphics processing unit (dGPU). The
chipset 230, 235 acts as a simple input/output hub for com-
municating data and instructions between the CPU 205, the
GPUs 170, 175, the computing device-readable media 220,
225, and peripheral devices 175, 240-265. In one implemen-
tation, the chipset includes a northbridge 230 and southbridge
235. The northbridge 230 provides for communication
between the CPU 205, system memory 220 and the south-
bridge 235. In one implementation, the northbridge 230
includes an integral GPU. The southbridge 235 provides for
input/output functions. The peripheral devices 175, 240-265
may include a display device 240, a network adapter (e.g.,
Ethernet card) 245, CD drive, DVD drive, a keyboard, a
pointing device, a speaker, a printer, and/or the like. In one
implementation, the discrete graphics processing unit is
coupled as a discrete GPU peripheral device 175 by abus such
as a Peripheral Component Interconnect Express (PCle) bus.

The computing device-readable media 220, 225 may be
characterized as primary memory and secondary memory.
Generally, the secondary memory, such as a magnetic and/or
optical storage, provides for non-volatile storage of com-
puter-readable instructions and data for use by the computing
device. For instance, the disk drive 225 may store the operat-
ing system (OS), applications and data. The primary memory,
such as the system memory 220 and/or graphics memory,
provides for volatile storage of computer-readable instruc-
tions and data for use by the computing device. For instance,
the system memory 220 may temporarily store a portion of
the operating system, a portion of one or more applications
and associated data that are currently used by the CPU 205,
GPU 170 and the like.

FIGS. 3A and 3B show a graphics processing technique, in
accordance with one embodiment of the present technology.
Referring now to FIG. 3A, when an application 110 starts, it
calls the user mode level runtime application programming
interface (e.g., DirectX API d3d9.d1l) 120 to determine what
display adapters are available. In response, the runtime API
120 enumerates the adapters that are attached to the desktop
(e.g., the primary display 180). The runtime AP1 120 loads the
device driver interface (DDI) (e.g., user mode drive (umd-
.ddl)) 130 for the GPU 170 attached to the primary display
180. The DDI 130 configures command buffers of the graph-
ics processor 170 attached to the primary display 180. The
DDI 130 will then call back to the runtime API 120 when the
command buffers have been configured.

In addition, during initialization of the system, one or more
driver layers are loaded, including a thunk layer (e.g.,
GDI32.d11) 140, an operating system level kernel mode driver
(e.g., dxgkrnal.sys) 150, a device kernel mode driver agent,
and/or the like. In one implementation, the device kernel
mode driver agent may be a kernel mode wrapper driver 160
that includes the binary images of the device specific kernel
mode driver for the integral graphics processing unit 162 and
the device specific kernel mode driver for the discrete graph-
ics processing unit 164. The kernel mode wrapper driver 160
may also be referred to as a hybrid driver. Generally, the entry
points into the kernel mode wrapper driver 160 are the same
as the entry points for the device specific entry points.

Initially, the attached adapter includes the integral graphics
processing unit 170 and its device specific kernel mode driver
162 because the integral graphics processing unit 170 is
attached to the primary display 180. Thereafter, the device

20

25

30

40

45

50

4

kernel mode driver agent 160 may detect a transition from
rendering graphics on the integral graphics processing unit
170 to the discrete graphics processing unit 175. In one imple-
mentation, the discrete graphics processing unit 175 and its
device specific kernel mode driver 164 are configured as the
attached adapter and the integral graphics processing unit 170
and its device specific kernel mode driver 162 are detached, as
illustrated in FIG. 3B. In one implementation, the transition is
initiated by a service or user interface calling a given entry
point of a local function in the wrapper driver 160.

In response to the transition, the device kernel mode driver
agent 160 configures the integral graphics processing unit
170 to create a frame buffer 171 and to scan out from the
frame buffer to the attached display 180. In one implementa-
tion, the kernel mode wrapper driver 160 receives a call to
create a surface in a frame buffer 171 for the discrete graphics
processing unit. The call to create the surface in the frame
buffer 171 for the discrete graphics processing unit is redi-
rected as a call to create the surface in a frame buffer for the
integral graphics processing unit 170. In response to the redi-
rected call to create the surface, the kernel mode wrapper
driver 160 receives from the device specific kernel mode
driver 162 a virtual address of the surface in the frame buffer
171 of the integral graphics processing unit 170. The kernel
mode wrapper driver 160 determines a physical address from
the virtual address of the surface. The kernel mode wrapper
driver stores the physical address for use in transporting ren-
dered data from the discrete graphics processing unit to the
frame buffer 171 of the integral graphics processing unit 170
attached to the primary display 180. For example, the kernel
mode wrapper driver, impersonating the operating system,
may make a sequence of calls including: GetStandardAllo-
cationDriverData to get the allocation bits to pass to the
following calls, CreateAllocation to create an allocation,
OpenAllocation to open it (specifying an offset into the heap,
0), AcquireSwizzlingRange to request a CPU mapping to the
allocation, CommitVidPn to assign the allocation to scanout,
SetVidPnSourceAddress to point the digital-to-analog con-
verter (DAC) to the allocated surface, and SetVidPnSource-
Visibility to turn on the primary display. The sequence of calls
works because the operating system is not handling the inte-
gral graphics processing unit 170 attached to the primary
display 180 at the time.

Thereafter, when the application 110 makes graphics
request to the user mode level runtime API (e.g., DirectX API
d3d9.dll) 120 of the operating system, the runtime 120 sends
graphics requests to the DDI 130 which configures command
buffers. The DDI calls to the operating system kernel mode
driver (e.g., DirectX driver dxgkrnl.sys) 150, through the
runtime API 120, to schedule the graphics request. The oper-
ating system kernel mode driver 150 then calls to the device
kernel mode driver agent 160. The device kernel mode driver
agent 160 determines a context of one or more calls after the
transition call. The wrapper driver redirects the calls to the
device specific kernel mode driver 162 of the integral graph-
ics processing unit 170 attached to the primary display 180
and/or the device specific kernel mode driver 164 of the
discrete graphics processing unit 175 based upon the context
of'the given call.

When a call to display a surface rendered by the discrete
graphics processing unit 175 is received, the device kernel
mode driver agent 160 inserts a call to the kernel mode driver
164 of the discrete graphics processing unit 175 to copy the
rendered image to the physical address of the frame buffer
171 of the integral graphics processing unit 170. In one imple-
mentation, the rendered image is copied from a scanout of the
discrete graphics processing unit 175 to the surface in the

US 9,111,325 B2

5

frame buffer 171 of the integral graphics processing unit 170.
For example, a physical PCle address can be deduced from
the virtual address obtained from the AcquireSwizzlin-
gRange call, and used for the discrete graphics processing
unit 175 to emit direct memory access (DMA) blits into the
specified range. The device kernel mode driver agent 160 also
inserts a call to the kernel mode driver 162 of the integral
graphics processing unit 170 to present the rendered image
from the frame buffer on the display 180. The rendered image
may be presented from the frame buffer by a digital-to-analog
converter of integral graphics processing unit 170.

In one implementation, the scanout buffer of the discrete
graphics processing unit 175 and/or the frame buffer for the
integral graphics processing unit 170 may be double buffered.
In one implementation, the rendered image is copied through
a Peripheral Component Interconnect Express (PCle) bus
coupling the discrete graphics processing unit 175 to the
integral graphics processing unit 170.

Accordingly, embodiments of the present technology
advantageously enable applications to render graphics on the
discrete graphics processor 175 and present the rendered
graphics on a display 180 attached to the integral graphics
processor 170. The integrated graphics processing unit is
configured by a device kernel mode driver agent as a dumb
buffer. The embodiments advantageously remove the need
for multiplexers to transport the rendered images from the
scanout of the discrete graphics processing unit to the display
device attached to the integrated graphics processing unit.

The foregoing descriptions of specific embodiments of the
present technology have been presented for purposes of'illus-
tration and description. They are not intended to be exhaus-
tive or to limit the invention to the precise forms disclosed,
and obviously many modifications and variations are possible
in light of'the above teaching. The embodiments were chosen
and described in order to best explain the principles of the
present technology and its practical application, to thereby
enable others skilled in the art to best utilize the present
technology and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

What is claimed is:

1. One or more non-transitory computing device readable
media having computing device executable instructions
which when executed perform a method comprising:

detecting, by a device kernel mode driver agent, a transition

from rendering graphics on a first graphics processing
unit to a second graphics processing unit;

configuring, through the device kernel mode driver agent,

the first graphics processing unit to create a frame buffer

and to scan out to a display from the frame buffer, in

response to detecting the transition, wherein configuring

the first graphics processing unit to create the frame

buffer includes:

redirecting a call to allocate a surface from a kernel
mode driver of the second graphics processing unit to
a kernel mode driver of the first graphics processing
unit;

allocating, by the first graphics processing unit, the
frame bufter for a surface of a specified resolution in
response to the redirected call to allocate the surface;

returning, from the first graphics processing unit to the
device kernel mode driver anent, a virtual address of
the frame buffer;

5

10

20

40

45

55

6

determining, by the device kernel mode driver agent, a
physical address of the frame buffer from the virtual
address returned from the first graphics processing
unit; and

storing, by the device kernel mode driver agent, the
physical address of the frame buffer; and

blitting an image rendered on the second graphics process-

ing unit to the frame buffer of the first graphics process-

ing unit after detecting the transition.

2. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the transition is initiated by a service or user interface calling
a given entry point of a local function in the device kernel
mode driver agent.

3. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the device kernel mode driver agent includes the device spe-
cific kernel mode driver of the first graphics processing unit
and the device specific kernel mode driver of the second
graphics processing unit.

4. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the device kernel mode driver agent includes components of
the device specific kernel mode driver of the first graphics
processing unit and the device specific kernel mode driver of
the second graphics processing unit.

5. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
blitting the rendered image comprises:

receiving, by the device kernel mode driver agent, a call to

the device specific kernel mode driver of the second

graphics processing unit to display the rendered surface;

inserting, by the device kernel mode driver agent, a call to
the device specific kernel mode driver of the second
graphics processing unit to copy the rendered image to
the physical address of the frame buffer of the first
graphics processing unit; and

inserting, by the device kernel mode driver agent, a call to

the device specific kernel mode driver of the first graph-

ics processing unit to present the rendered image from
the frame buffer, by a digital-to-analog converter of first
graphics processing unit, on the display.

6. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 5, wherein
copying the rendered image to the physical address of the
frame buffer of the first graphics processing unit comprises a
direct memory access (DMA).

7. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the first graphics processing unit comprises an integrated
graphics processing unit.

8. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the second graphics processing unit comprises a discrete
graphics processing unit.

9. The one or more non-transitory computing device read-
able media having computing device executable instructions
which when executed perform the method of claim 1, wherein
the device kernel mode driver agent comprises a wrapper
driver.

US 9,111,325 B2

7

10. A method comprising:

loading a kernel mode wrapper driver that includes a kernel
mode device driver for a first graphics processing unit
attached to a primary display and a kernel mode device
driver for a second graphics processing unit on an unat-
tached adapter;

receiving, by the kernel mode wrapper driver, a call from a
service or user interface to transition from rendering
graphics on the first graphics processing unit to the sec-
ond graphics processing unit;

outputting, by the kernel mode wrapper driver, a call to
create a surface in a frame buffer for the first graphics
processing unit in response to the received call to tran-
sition from rendering graphics on the first graphics pro-
cessing unit to the second graphics processing unit;

receiving, by the kernel mode wrapper driver, a virtual
address of the surface in the frame buffer for the first
graphics processing unit in response to the call to create
the surface;

determining, by the kernel mode wrapper driver, a physical
address of the surface from the virtual address of the
surface;

storing, by the kernel mode wrapper driver, the physical
address of the surface;

determining, by the kernel mode wrapper driver, a context
of one or more calls after the transition call;

receiving, by the kernel mode wrapper driver, one or more
calls having a rendering context after the transition call;

directing, by the kernel mode wrapper driver, the one or
more calls having the rendering context to the kernel
mode driver of the second graphics processing unit after
the transition call;

receiving, by the kernel mode wrapper driver, one or more
calls having a display context after the transition call;
and

10

15

20

25

30

35

8

redirecting, by the kernel mode wrapper driver, the one or
more calls having the display context after the transition
call including;

receiving, by the kernel mode wrapper driver, a call to

present an image rendered on the second graphics pro-
cessing unit;
inserting, by the kernel mode wrapper driver, a call to copy
the rendered image to the surface in the frame buffer for
the first graphics processing unit at the physical address
stored by the kernel mode wrapper driver; and

redirecting, by the kernel mode wrapper driver, a call to
present the image from the surface in the frame bufter for
the first graphics processing in response to the call to
present the image rendered on the second graphics pro-
cessing unit.

11. The method according to claim 10, wherein the call to
copy the rendered image comprises a direct memory access to
the physical address.

12. The method according to claim 10, wherein the ren-
dered image is copied from a scanout of the second graphics
processing unit to the surface in the frame buffer for the first
graphics processing unit at the physical address.

13. The method according to claim 10, wherein the frame
buffer is shared with the first and second graphics processing
unit.

14. The method according to claim 10, wherein the ren-
dered image is copied through a Peripheral Component Inter-
connect Express (PCle) bus coupling the second graphics
processing unit to the first graphics processing unit.

15. The method according to claim 10, wherein the frame
buffer is shared with the first and second graphics processing
unit and is mapped to a Peripheral Component Interconnect
Express (PCle) bus coupling the second graphics processing
unit to the first graphics processing unit.

16. The method according to claim 10, wherein the frame
buffer is double buffered.

#* #* #* #* #*

